
<Insert Picture Here> 

JVM Language Summit 
Getting Started Guide 

Cameron Purdy, VP of Development, Oracle 

Get on the Grid 



cameron.purdy@oracle.com 

The following is intended to outline our general 
product direction. It is intended for information 
purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be 
relied upon in making purchasing decisions. 
The development, release, and timing of any 
features or functionality described for Oracle’s 
products remains at the sole discretion of Oracle. 



cameron.purdy@oracle.com 

<Insert Picture Here> 

Agenda  

•  Introduction 
•  Obligatory Top-10 List 
•  Rambling 
•  Conclusion 



cameron.purdy@oracle.com 

About the Speaker: Cameron Purdy 

•  ‘97 – My first Java disassembler 
•  ‘98 – assembler/disassembler 
•  ‘98 – Java method compiler 
•  ‘99 – JavaScript method compiler 
•  ‘00 – AOP ClassLoader (TDE) 
•  ’01 to present – Coherence 
•  ’02 to present – JSR 107  :-o 
•  ’04 – x86 on Azul (toy project) 
•  ’05 to present – XVM (toy project) 
•  ‘11 – Java EE 7 (a real project) 



cameron.purdy@oracle.com 

Disclaimer 

•  I don’t work on the JVM 
•  I don’t manage work on the JVM 
•  I don’t write language implementations for the JVM 
•  I’m definitely out-of-date 
•  I can be wrong 



cameron.purdy@oracle.com 

<Insert Picture Here> 

Top 10 JVM erroneous zones 



cameron.purdy@oracle.com 

10. Immutability 
It’s time for a change 

•  How did we get so far without it? 
–  String, intrinsic types & wrappers: Workable 
–  Arrays, Date: Unusable in interfaces without immutability 
–  What about objects that need to become immutable? 

•  Why not just swap the vtabl? 
–  Methods that mutate fields just throw IllegalStateException 
–  It would be easier if there were properties instead of fields 

•  So much can build on top of immutability 
–  Escape-ability (compaction and concurrency optimizations) 
–  Ability to safely define a class at runtime 
–  “Primitive” types, i.e. no need for wrapper classes 



cameron.purdy@oracle.com 

9. Seriously? Primitive types? 
In need of some evolution… 

•  Current primitive types have well-known interfaces 
–  LADD, LCMP, LMUL, LDIV, … 

•  Unfortunately, interface == implementation 
–  We’ll fix that one next 

•  Goal: Current code natively compiles the same way 
–  Except perhaps with respect to auto-boxing 

•  Benefits 
–  Reduction from two type systems to one 
–  Single interface across int and Integer 
–  Extensible through traits 
–  Current op-codes become short-form for specific methods 



cameron.purdy@oracle.com 

8. Interface vs. Implementation 
Why do I have to know what class it is? 

•  String 
–  ASCII? UTF-8? UTF-16? 32-bit code points? 

•  Array 
–  Interface defined by op-codes (ALOAD, ASTORE, 
ARRAYLENGTH, etc.) 

–  Current implementation is JVM intrinsic 
–  Could be implemented by Java, e.g. java.util.List 

•  Duck typing: It’s about the interface 
–  All types have an interface; interface = f(type) 

•  Traits, Classes, Interfaces 
–  Aren’t they actually all the same thing? 



cameron.purdy@oracle.com 

7. Properties 
When you can’t get the same high from name-mangling 

•  Properties are like fields whose getfield & 
putfield can be intercepted & overridden 
–  It’s as if any property method implementation always has a 
super() provided by the JVM 

–  If super() is called, then the underlying “field” must exist 

•  Not just get() and set(), e.g. atomics: 
–  SetIf 
–  GetSet 

•  For backwards compatibility, fields can become a 
simple (JVM-supplied) form of a property 



cameron.purdy@oracle.com 

6. Missing the most Obvious Intrinsic Types 
2.0 + 2.0 = 3.9999999999999999794 

•  Decimal 
–  So what if the world’s most popular platform for business 

applications doesn’t support a decimal type? 
–  IEEE 754-2008 a.k.a. IEEE 754r – defines decimal types! 

•  64-bit is soooooooooo 2005 … 
–  Need 128-bit integer, binary floating point, decimal 

•  Binary String 
•  A working Date, Time & Date/Time 
•  Date & Time intervals 
–  No more “long millis”? 

•  Unsigned types? 



cameron.purdy@oracle.com 

5. Wanted: A Real Runtime Model 
Just because it’s runtime doesn’t mean it’s not dev time 

•  Class as a first-class object 
–  Ability to define classes, including properties and methods, at 

runtime 
–  Modifying an existing class that already has instances could 

be a problem 

•  Access to Source and Byte Code at runtime 
–  These should just be properties of a Method 
–  Yet another reason why the JVM needs to include an 

assembler (and throw in the compiler while you’re at it!) 

•  Access to execution information at runtime 
–  Stack frames 
–  Variables 



cameron.purdy@oracle.com 

4. Let’s change the constants 
The more things change … 

•  Binary, Date, Time, Date/Time, Date & Time Intervals 
–  Basically anything that is an intrinsic type 

•  Arrays, Bags, Sets, Maps, Tuples, Structures 
–  Simple recursive model of definition 

•  Runtime Model 
–  Package, class, method, property, variable 



cameron.purdy@oracle.com 

3. Alternate ClassFile Format 
It’s time to stop coloring inside the lines 

•  64KB limits? In 2011? 
–  A marker could indicate an alternative encoding 
–  e.g. All offsets would become 32-bit or variable-length 

•  Hierarchical 
–  Why aren’t inner classes, inner classes? 
–  Why aren’t anonymous classes within the containing method? 
–  Why isn’t a constant pool shared by all? 

•  Stack machine vs. Register machine 
–  Once we acknowledge that LADD is a virtual invoke on the 

Long interface, what non-invocation ops are left? 
–  Inputs are either a register or a constant; outputs are registers 
–  Invoke MethodConst Object Param* ReturnValue* 



cameron.purdy@oracle.com 

2. Continuations 
Still going … 

•  “Continuations refer to a functional programming 
technique that allows you to save the current 
execution state of a thread, with the possiblity of 
suspending and later resuming execution.” - Artima 

•  Various implementations 
–  Javaflow 
–  RIFE 
–  Jetty 
–  Scala (using exceptions?) 

•  Could leverage a stronger runtime model (execution 
frames) combined with Thread or Throwable support 



cameron.purdy@oracle.com 

1. Tail Recursion / Tail Call Optimization 
… because I promised Guy Steele I’d mention it 

•  Tail Recursion is the property of a method that has 
recursion as its final operation before returning; the 
last thing the method does is call itself. 

•  Tail Call Optimization is used when the last thing a 
method does before it returns is call another method: 
it does a “goto” to the start of the second method, 
letting it re-use the first routine's stack frame. 

•  Tail Recursion implemented by Scala 
–  As a while loop? 

•  JVM support desired by Fortress & many others 
–  Impact on stack traces? 



cameron.purdy@oracle.com 

<Insert Picture Here> 

Left-Overs 



cameron.purdy@oracle.com 

Separate but equal != equal 
It works for primitive types … 

•  Immutability introduces a new possibility for “==” 
–  Can have two copies of the same object (mt-compaction) 
–  “Pointer” no longer equals “reference” 
–  We need to ask ourselves what “==” actually means – it’s 

comparing a value in a system of objects 

•  Reference equality was an excellent engineering 
decision … in 1995 
–  Performance-wise: Free 
–  But for objects that are values, it’s broken, e.g. auto-boxing 

•  Graphs represent nightmare scenarios 
–  All references are of one type; there is no ownership semantic 



cameron.purdy@oracle.com 

Why is new non-virtual? 
Non-virtuals: Useless to resist; you will be assimilated 

•  Who knows how to “new”? 
–  Remember: Interface == Class 
–  The context that the code is running within provides the 

correct implementation 
–  The context is the name resolver and the “factory” 

•  Example: Inner classes 
–  Base: “new Inner()” 
–  Sub: “class Inner extends Base.Inner” 

•  Could be coupled with dependency injection 
–  Context is the classloader, the thread, the new-ing method, … 
–  Unification of runtime namespace / implementation resolution 

and DI helps decouple interface from implementation 



cameron.purdy@oracle.com 

Cross-Cutting Concerns 

•  Traits implement some interface to explain their 
capabilities 

•  Traits extend some interface to explain their 
requirements 

•  Traits can extend implementation, e.g. other traits 
•  Trait binding can be explicit by consumer or provider, 

or implicit 
–  e.g. By a with keyword 
–  A trait can be incorporated into a class at compile time 
–  A trait can be bound automatically by the Execution Context 

•  Example cross-cutting concern: Serialization 



cameron.purdy@oracle.com 

Concurrency Control 
What was beautiful in ’95 is ugly in ‘11 

•  Swap out vtabl for escaped vs. non-escaped object 
–  No-cost thread safety when an object hasn’t escaped 

•  synchronized must die (we have >2 CPUs!) 
–  If actual deadlock is possible, then we’ve failed in our design 
–  Why don’t we have DeadlockError today? Backwards 

compatibility?!? 

•  Objects that aren’t thread-safe shouldn’t be allowed to 
escape! 
–  Safety and predictability outweigh the right to stupidity 

•  Simplified thread safety for mutable objects 
–  CAS – fine-grained, single-operation transactions 
–  STM – coarse-grained, more expensive transactions 



cameron.purdy@oracle.com 

Garbage Collection 
Sooner or later, you have to pay the piper 

•  Unescaped objects are managed locally to a thread 
–  Thread local GC can be done with complete concurrency 

•  Escaped objects can also be collected concurrently 
–  Immutable objects enable concurrency by permitting multiple 

copies to exist (concurrent compact) 
–  STM may allow for concurrent mark, sweep and compact of 

mutable objects – concurrent with execution! 

•  Finally an answer for System.gc() 
–  Collect the thread-local heap 
–  Concurrently collect the global heap – using just this thread 



cameron.purdy@oracle.com 

Isolation, Resource Management & Multi-Tenancy 
Didn’t you see the cloud picture on the first slide? 

•  We’ve got JSR-284: Isolates 
•  We need isolates-lite 
–  doNonPrivileged() 
–  A “ring 3” approach 

•  All resources need to be “managed” 
–  Disk – virtualizable with NIO2 (but not runtime configurable!) 
–  CPU – we already embed checkpoints for GC 
–  RAM – must be able to limit allocation 
–  Network – must be able to limit visibility, bandwidth utilization 



cameron.purdy@oracle.com 

The preceding is intended to outline our general 
product direction. It is intended for information 
purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be 
relied upon in making purchasing decisions. 
The development, release, and timing of any 
features or functionality described for Oracle’s 
products remains at the sole discretion of Oracle. 



cameron.purdy@oracle.com 


