
Debugging in 2011



The traditional debugger



Traditional Debugger
• Invented in the 70s 

• Design assumptions and implementation no 
longer useful for programs of 2011



Design assumptions
• Programs are single threaded

• Flow of execution is sequential

• Bugs are always reproducible

• Programs run for short periods of time



Designed for single thread
• ‘Stepping’ buttons assume sequential 

execution

• What happens in another thread when you 
‘step over’ in one thread?



Short running, reproducible bugs
• Breakpoint model assumes short running 

programs

• Also assumes bugs are always reproducible



Not designed for mutithreading
• Hitting a breakpoint changes all thread timing.

• Just showing stack of multiple threads does 
not really help.



But in 2011…



Programs of 2011
• Multithreaded is the norm, not the exception

• Flow of execution not 100% sequential

• Reproducing bugs is (very) tough

• Programs run for weeks/months/years



Proof of all this….



Logging



Problems with logging
• Only real way to debug programs of 2011

• Distraction from actual coding

• Impossible to debug from huge logs for long running 

programs

• Fundamentally broken:

– Trying to ‘predict’ errors

– In real life, errors happen where you least expect

– Thus, no logging statement where error occurred



Rethinking the debugger…



Background

• Chronon makes a ‘DVR for Java’

• Replaying the program is useless if you cant 
debug

• The traditional debugger didn’t work



Time Travelling Debugger

• No Breakpoints

• Jump to any point in time. No delay

• Record everything, don’t reproduce

• Embrace both multi-threaded and sequential 
execution



Implementation

• Chronon ‘recordings’ are essentially indexed 
data files

• Read data and display state when you are 
debugging

• Essentially give an illusion of replaying

• All we care is to debug, not replay


