Debugging in 2011

eaCchro

The traditional debugger

echro

Traditional Debugger

nvented in the 70s

Design assumptions and implementation no
onger useful for programs of 2011

echro

Design assumptions

Programs are single threaded

Flow of execution is sequential

Bugs are always reproducible
Programs run for short periods of time

echro

Designed for single thread

‘Stepping’ buttons assume sequential
execution

What happens in another thread when you
‘step over’ in one thread?

— Ly
e = RS

echro

Short running, reproducible bugs

* Breakpoint model assumes short running
programs

* Also assumes bugs are always reproducible

echro

Not designed for mutithreading

* Hitting a breakpoint changes all thread timing.

e Just showing stack of multiple threads does
not really help.

echro

Butin 2011...

echro

Programs of 2011

Multithreaded is the norm, not the exception
-low of execution not 100% sequential
Reproducing bugs is (very) tough

Programs run for weeks/months/years

echro

Proof of all this....

echro

Logging

echro

Problems with logging
Only real way to debug programs of 2011

Distraction from actual coding

Impossible to debug from huge logs for long running

programs

Fundamentally broken:
— Trying to ‘predict’ errors
— In real life, errors happen where you least expect

— Thus, no logging statement where error occurred

echro

Rethinking the debugger...

echro

Background

e Chronon makes a ‘DVR for Java’

* Replaying the program is useless if you cant
debug

* The traditional debugger didn’t work

echro

Time Travelling Debugger

No Breakpoints
Jump to any point in time. No delay
Record everything, don’t reproduce

Embrace both multi-threaded and sequential
execution

<0 [k = ™= auEl".v =z R L

echro

Implementation

 Chronon ‘recordings’ are essentially indexed
data files

* Read data and display state when you are
debugging

e Essentially give an illusion of replaying
* All we care is to debug, not replay

echro

