Debugging in 2011
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The traditional debugger
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Traditional Debugger

nvented in the 70s

Design assumptions and implementation no
onger useful for programs of 2011
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Design assumptions

Programs are single threaded

Flow of execution is sequential

Bugs are always reproducible
Programs run for short periods of time
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Designed for single thread

‘Stepping’ buttons assume sequential
execution

What happens in another thread when you
‘step over’ in one thread?
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Short running, reproducible bugs

* Breakpoint model assumes short running
programs

* Also assumes bugs are always reproducible
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Not designed for mutithreading

* Hitting a breakpoint changes all thread timing.

e Just showing stack of multiple threads does
not really help.
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Butin 2011...
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Programs of 2011

Multithreaded is the norm, not the exception
-low of execution not 100% sequential
Reproducing bugs is (very) tough

Programs run for weeks/months/years
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Proof of all this....
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Logging
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Problems with logging
Only real way to debug programs of 2011

Distraction from actual coding

Impossible to debug from huge logs for long running

programs

Fundamentally broken:
— Trying to ‘predict’ errors
— In real life, errors happen where you least expect

— Thus, no logging statement where error occurred

echro



Rethinking the debugger...
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Background

e Chronon makes a ‘DVR for Java’

* Replaying the program is useless if you cant
debug

* The traditional debugger didn’t work
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Time Travelling Debugger

No Breakpoints
Jump to any point in time. No delay
Record everything, don’t reproduce

Embrace both multi-threaded and sequential
execution
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Implementation

 Chronon ‘recordings’ are essentially indexed
data files

* Read data and display state when you are
debugging

e Essentially give an illusion of replaying
* All we care is to debug, not replay
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